ПОРІВНЯННЯ МОЖЛИВОСТЕЙ АРХІТЕКТУР НЕЙРОННИХ МЕРЕЖ У ДОСЛІДЖЕННЯХ ТВОРІВ МИСТЕЦТВА

Автор(и)

DOI:

https://doi.org/10.32782/2411-3034-2024-35-24

Ключові слова:

нейронні мережі, штучний інтелект, комп’ютерний мистецтвознавчий аналіз, міждисциплінарний підхід, генерація зображень

Анотація

У статті розглянуто можливості застосування алгоритмів нейронних мереж, зокрема згорткових, генеративно-змагальних та трансформерів, для аналізу творів мистецтва. Методика дослідження базується на аналітичному підході до світових досліджень та публікацій, а також на експериментах та тестах в умовах технологічної лабораторії. Результати. Виконане порівняння переваг та недоліків трьох архітектур нейромереж, проаналізовані показники точності в різних завданнях та умовах. Подані результати власних експериментів автора з використанням деяких архітектур нейромереж, а також розглянуті приклади їхнього застосування в мистецтвознавчих дослідженнях. Висновки. З’ясовано, що згорткові нейронні мережі оптимальні для класифікації, атрибуції та пошуку схожих творів; генеративно-змагальні більше підходять для генерації нових зображень, стилізації та відновлення пошкоджень; архітектура трансформерів ефективна для аналізу композиції, семантики та контексту. Зроблено акцент на тому, що вибір релевантної архітектури залежить від специфіки завдання, наявних ресурсів дослідника, якості та кількості даних.

Посилання

Generative adversarial networks / I. Goodfellow et al. Communications of the ACM. 2020. Vol. 63, No. 11. P. 139–144. URL: https://doi.org/10.1145/3422622

Karpathy A., Fei-Fei L. Deep visual-semantic alignments for generating image descriptions. IEEE machine intelligence. 2017. Vol. 39, No. 4. P. 664–676. URL: https://doi.org/10.1109/tpami.2016.2598339

Bengio Y., Lecun Y., Hinton G. Deep learning for AI. Communications of the ACM. 2021. Vol. 64, no. 7. P. 58–65. URL: https://doi.org/10.1145/3448250

Sandoval C., Pirogova E., Lech M. Two-Stage deep learning approach to the classification of fine-art paintings. IEEE access. 2019. Vol. 7. P. 41770–41781. URL: https://doi.org/10.1109/access.2019.2907986

Lecoutre A. Recognizing art style automatically in painting with deep learning. Proceedings of the ninth asian conference on machine learning, 16 June 2024. P. 327–342. URL: https://proceedings.mlr.press/v77/lecoutre17a.html.

Sanakoyeu A., Kotovenko D., Lang S. A style-aware content loss for real-time HD style transfer. Arxiv. 2018. URL: https://doi.org/10.48550/arXiv.1807.10201.

Trach Y. Artificial intelligence as a tool for creating and analysing works of art. Culture and arts in the modern world. 2021. No. 22. P. 164–173. URL: https://doi.org/10.31866/2410-1915.22.2021.235907

Sovhyra T. Artificial intelligence and issue of authorship and uniqueness for works of art (technological research of the next rembrandt). Culture and arts in the modern world. 2021. No. 22. P. 156–163. URL: https://doi.org/10.31866/2410-1915.22.2021.235903

Volynets V. The impact of artificial intelligence on contemporary art: opportunities and challenges. Digital platform: information technologies in sociocultural sphere. 2023. Vol. 6, No. 1. P. 21–31. URL: https://doi.org/10.31866/2617-796x.6.1.2023.283933

Потапенко В. Нейронні мережі для розпізнавання об’єктів : дипломна робота на здобуття ступеня магістра спеціальності “Комп’ютерні науки”. Київ, 2022. 84 с. URL: https://er.nau.edu.ua/handle/NAU/57740.

Мартиненко А. Методи і моделі організації, обробки та аналізу даних в інтелектуальній системі підтримки прийняття рішень при ідентифікації творів живопису : дис. … доктора філософії. Дніпро, 2023. 156 с. URL: https://ir.nmu.org.ua/handle/123456789/165588.

Mcculloch W., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of mathematical biology. 1990. Vol. 52, No. 1–2. P. 99–115. URL: https://www.cs.cmu.edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf

Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review. 1958. Vol. 65, No. 6. P. 386–408. URL: https://doi.org/10.1037/h0042519

Rumelhart D. E., Hinton G. E., Williams R. J. Learning representations by back-propagating errors. Nature. 1986. Vol. 323, No. 6088. P. 533–536. URL: https://doi.org/10.1038/323533a0

Досвід FILM.UA Design: практичні кейси використання нейромереж і ШІ в українському кіно та серіалах / Анна Давидова, Анастасія Рахманіна, Юлія Козиряцька. Media Business Reports. URL: https://mbr.com.ua/uk/news/technology/4959-sannikov-ai Дата публікації: 4.05.2023 (дата звернення: 15.03.2024).

Воркшоп від Ради молодих учених КНУКіМ. КНУКіМ – Київський національний університет культури і мистецтв. URL: https://knukim.edu.ua/vorkshop-vid-rady-molodyh-uchenyhknukim-2/ Дата публікації: 22.02.2024 (дата звернення: 15.03.2024).

Санніков Є. Інноваційні методи у продакшні контенту. AI для генерації зображень та відео, deepfake, нейронне сканування, віртуальні студії. Міжнародний фестиваль актуальної анімації та медіа-мистецтва LINOLEUM. URL: https://linoleumfest.com/uk/program/lectortium/events/innovations-production. Дата публікації: 25.09.2023 (дата звернення: 18.06.2024).

Ahrneteg J. Semantic segmentation of historical document images using recurrent neural networks. Karlskrona, Sweden, 2019. 52 p. URL: https://www.diva-portal.org/smash/get/diva2:1332073/FULLTEXT01.pdf.

GitHub – Grimwan/ReccurentNeuralDSS: ReccurentNeuralNetwork. GitHub. URL: https://github.com/Grimwan/ReccurentNeuralDSS (дата звернення: 18.06.2024).

Convolutional neural network style transfer towards Chinese paintings / J. Sheng, C. Song, J. Wang, Y. Han. IEEE access. 2017. Vol. 20. P. 1–9. URL: https://doi.org/10.1109/access.2019.2952616 (date of access: 16.06.2024).

Review of deep learning: concepts, CNN architectures, challenges, applications, future directions / L. Alzubaidi et al. Journal of big data. 2021. Vol. 8, no. 1. URL: https://doi.org/10.1186/s40537-021-00444-8 (date of access: 16.06.2024).

Gao X., Tian Y., Qi Z. RPD-GAN: learning to draw realistic paintings with generative adversarial network. IEEE transactions on image processing. 2020. Vol. 29. URL: https://doi.org/10.1109/tip.2020.3018856 (date of access: 16.06.2024).

Guarnera L., Giudice O., Battiato S. Fighting deepfake by exposing the convolutional traces on images. IEEE access. 2020. Vol. 8. URL: https://doi.org/10.1109/access.2020.3023037 (date of access: 16.06.2024).

An image is worth 16x16 words: transformers for image recognition at scale / Dosovitskiy A. et al. Arxiv. 2021. URL: https://arxiv.org/abs/2010.11929 Дата публікації: 22.10.2020 (дата звернення: 18.06.2024).

Neural Network Framework. PyTorch. URL: https://pytorch.org/ Дата публікації: 22.10.2020 (дата звернення: 18.06.2024).

Google Colab AI platform. Google Colab. URL: https://colab.research.google.com/ (дата звернення: 18.06.2024).

Find open datasets and machine learning projects. Kaggle: Your Machine Learning Community. URL: https://www.kaggle.com/datasets (дата звернення: 18.06.2024).

##submission.downloads##

Опубліковано

2024-07-25

Номер

Розділ

МИСТЕЦТВОЗНАВСТВО