EXPERIENCE АND TOOLS FOR PARAMETRIC DESIGN OF RESIDENTIAL BUILDINGS
DOI:
https://doi.org/10.32782/naoma-bulletin-2025-3-6Keywords:
architecture, residential building, living space, architectural and planning decision, function and planning organization, parametric modeling, algorithm, Rhino, Grasshopper.Abstract
Abstract. The purpose of this article is to analyze the experience of parametric design of residential buildings and determine the means that ensure the optimization of living space based on algorithms built on the quality system of parameters. This method allows, by changing geometric, engineering, psychological and other parameters, to improve and optimize both planning and aesthetic solutions. The paper explores the possibilities and prospects for the application of parametric design in the creation of residential buildings and complexes. The historical development of the method, its key advantages, in particular adaptability, automation, integration with other technologies and innovative approaches to design, are studied. The basic principles of creating algorithms for the formation of living spaces that provide optimal functional and aesthetic solutions are determined. The research methods include the analysis of scientific research, design and construction experience, collection of facts, description and generalization, which allows to obtain the necessary primary information for systematizing the processes covered in scientific articles, and focus on key aspects of the study. The results of the study open up new prospects for the architectural design of residential buildings, using methods and tools of parametric design and a system of defined algorithms, which contributes to the optimization of the design process and planning decisions. Conclusions. Innovative design methods, namely parametric design methods using algorithms built on a quality parameter system, provide an opportunity to improve planning decisions, take into account as many requirements as possible for safety, inclusion, ergonomics, energy efficiency, constructive solutions and psychological comfort.
References
Комаров К., Казарян Б. Оптимізація розробки студентських архітектурних проєктів за допомогою технології Rhino.Inside®.Revit. Збірник наукових праць «Українська академія мистецтва». 2023. Вип. 33. С. 17–24. URL: https://journals.naoma.kyiv.ua/index.php/uam/article/view/31 дата звернення: 26.02.2025).
Давидов А., Нестеренко В. Переваги та перспективи використання rhino.inside. Вісник Національної академії образотворчого мистецтва і архітектури. 2024. № 2. С. 12–16. URL: https://doi.org/10.32782/naoma-bulletin-2024-2-2 (дата звернення: 26.02.2025).
Омельяненко М. В., Омельяненко М. В. Параметричний метод нормування та підготовка архітекторів у сучасних умовах. Theory and practice of design. 2021. № 22. С. 71–78. URL: https://doi.org/10.18372/2415-8151.22.15395 (дата звернення: 26.02.2025).
Zhang J., Liu N., Wang S. Generative design and performance optimization of residential buildings based on parametric algorithm. Energy and Buildings. 2021. No. 244. P. 96–103. URL: https://www.sciencedirect.com/science/article/abs/pii/S0378778821003170 (дата звернення 12.10.2024).
Schnabel M.A. Parametric Designing in Architecture. Computer-Aided Architectural Design Futures (CAADFutures) / Dong, A., Moere, A. V., Gero, J. S. (eds). 2007. P. 237–250. URL: https://link.springer.com/chapter/10.1007/978-1-4020-6528-6_18
Pérez-Martínez I., Martínez-Rojas M., Manuel Soto-Hidalgo J. A methodology for urban planning generation: a novel approach based on generative design. Engineering applications of artificial intelligence. 2023. Vol. 124. P. 48–56
URL: https://www.sciencedirect.com/science/article/pii/S0952197623007935 (дата звернення 14.10.2024).
Wang T.-K., Duan W. Generative design of floor plans of multi-unit residential buildings based on consumer satisfaction and energy performance. Developments in the built environment. 2023. № 16. P. 93–102 URL: https://www.sciencedirect.com/science/article/pii/S2666165923001205 (дата звернення 28.11.2024).
Intelligent floor plan design of modular high-rise residential building based on graph-constrained generative adversarial networks / J. Liu et al. Automation in construction. 2024. № 159. P. 154–168 URL: https://www.sciencedirect.com/science/article/abs/pii/S0926580523005241 (дата звернення 13.10.2024).
Scheeren O. The Interlace / OMA. ArchDaily. 2015, 7 May. URL: https://www.archdaily.com/627887/theinterlace-oma-2 (дата звернення 26.02.2025).
Mountain Dwellings / PLOT = BIG + JDS. ArchDaily. 2009, 11 March. URL: https://www.archdaily.com/15022/mountain-dwellings-big (date of access: 16.02.2025).
Villa Verde Housing / ELEMENTAL. ArchDaily. 2013, 13 November. URL: https://www.archdaily.com/447381/villa-verde-housing-elemental (дата звернення 16.02.2025).
Zwicky Areal -Residential, workshop and commercial complex. Archello. URL: https://archello.com/project/zwicky-areal (дата звернення 16.02.2025).
Cilento K. Al Bahar Towers Responsive Facade / Aedas. ArchDaily. 2012, 05 September. URL: https://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas (дата звернення 16.02.2025).
One Thousand Museum Residential Tower / Zaha Hadid Architects. ArchDaily. 2020, 26 Feb. URL: https://www.archdaily.com/934407/one-thousand-museum-zaha-hadid-architects (дата звернення 16.02.2025).
Mukkavaara J., Sandberg M. Architectural design exploration using generative design: framework development and case study of a residential block. Buildings. 2020. Vol. 10, №. 11. P. 24–31 URL: https://www.mdpi.com/2075-5309/10/11/201 (дата звернення 13.11.2024).
Rhino.Inside.Revit Guides: сайт. URL: https://www.rhino3d.com/inside/revit/1.0/guides/ (дата звернення: 12.09.2024).
Stavric M., Marina O. Parametric modeling for advanced architecture. Researchgate. 2011. Vol. 22. P. 9–16 URL: https://parametric-architecture.com/wp-content/uploads/2018/09/PARAMETRIC-MODELING-FOR-ADVANCEDARCHITECTURE.pdf (дата звернення 12.10.2024).